Geometry of Fourfolds with an Admissible K3 Subcategory

Setting

A K3 category is a triangulated category whose Serve functor is the shift (-)[2] and with the same Hochschild cohomology of a K3 surface. Cubic fourfolds and Gushel-Mukai fourfolds have a semiorthogonal decomposition of their derived category of coherent sheaves given by exceptional objects and an admissible K3 category. This allows us to study:

- Fourier-Mukai partners of cubic fourfolds;
- the double EPW sextic associated to a GM fourfold as a moduli space of twisted sheaves on a K3 surface.

Motivation: K3 categories simplify the study of moduli problems over cubic or GM fourfolds.

Fourier-Mukai partners of cubic fourfolds

A cubic fourfold X is a smooth cubic hypersurface in $\mathbb{P}^5_{\mathbb{C}}$. Semiorthogonal decomposition

$$D^{b}(X) = \langle \mathcal{A}_X, \mathcal{O}_X, \mathcal{O}_X(1), \mathcal{O}_X(2) \rangle$$

where \mathcal{A}_X is a K3 category (Kuznetsov). **Definition:** A cubic fourfold X' is a **FM partner** of X if there is an equivalence $\mathcal{A}_X \xrightarrow{\sim} \mathcal{A}_{X'}$ of Fourier-Mukai type, i.e. there exists $K \in D^{b}(X \times X')$ such that

$$\Phi: \mathrm{D}^{\mathrm{b}}(X) \to \mathcal{A}_X \xrightarrow{\sim} \mathcal{A}_{X'} \to \mathrm{D}^{\mathrm{b}}(X')$$
$$\Phi(-) \cong \mathrm{R}p_{X'*}(K \overset{\mathrm{L}}{\otimes} \mathrm{L}p_X^*(-)).$$

Consistently with the analogy to K3 surfaces we have: **Theorem:**([1]) The number of isomorphism classes of FM partners #FM(X) of X is finite.

Question

Are there examples of cubic fourfolds with a prescribed number of non isomorphic FM partners?

Answer: Consider general cubic fourfolds of discriminant d with a Hodge-associated (twisted) K3 surface $(S, \alpha) \Leftrightarrow$ numerical condition on the discriminant.

Untwisted case (Hassett)

Twisted case (Huybrechts)

 $n_i \equiv 0 \pmod{2} \forall$ prime $p_i \equiv 2 \pmod{3}$ in $2d = \prod p_i^{n_i}$ (*')

Let d > 6, $d \equiv 0, 2 \mod(6)$ satisfying (*') and let hbe the number of distinct odd primes in prime factorization of $d/\operatorname{ord}(\alpha)$. Let X be a general element in \mathcal{C}_d .

Untwisted case: If d satisfies (*), then

$$\# \mathrm{FM}(X) = \begin{cases} 2^{h-1}, & \text{if } d \\ 2^{h-2}, & \text{if } d \\ 1, & \text{otherw} \end{cases}$$

Twisted case: We get a lower bound to #FM(X), depending on h and $\varphi(\alpha)$.

Tool: Mukai lattice for \mathcal{A}_X $\tilde{H}(\mathcal{A}_X, \mathbb{Z}) = \{ \kappa \in K_{top}(X) : \chi([\mathcal{O}_X(i)], \kappa) = 0, \forall i = 0, 1, 2 \}.$ **Theorem:**([1]) For general $X \in C_d$, $\mathcal{A}_X \xrightarrow{\sim} \mathcal{A}_{X'}$ of FM type iff their Mukai lattices are Hodge isometric.

Gushel-Mukai fourfolds

A GM fourfold is a smooth dimensionally transverse intersection

 $X = \mathrm{CG}(2, V_5) \cap \mathbb{P}(W) \cap Q,$

where Q is a quadric hypersurface in $\mathbb{P}(W) \cong \mathbb{P}^8 \subset$ $\mathbb{P}(\wedge^2 V_5 \oplus \mathbb{C}).$

Semiorthogonal decomposition

 $D^{b}(X) = \langle \mathcal{A}_{X}, \mathcal{O}_{X}, \mathcal{U}_{X}^{*}, \mathcal{O}_{X}(1), \mathcal{U}_{X}^{*}(1) \rangle$

where \mathcal{A}_X is a K3 category (Kuznetsov, Perry). **Lagrangian data:** X defines a triple (V_6, V_5, A) , where $A \subset \wedge^3 V_6$ is Lagrangian without decomposable vectors. Viceversa, it is possible to recover the GM fourfold from such a data (Debarre, Kuznetsov). \rightsquigarrow EPW stratification in $Y_A^{\geq 3} \subset Y_A^{\geq 2} \subset Y_A^{\geq 1} \subset \mathbb{P}(V_6)$ and **EPW sextic** hypersurface $Y_A := Y_A^{\geq 1}$.

Laura Pertusi

Dipartimento di Matematica F. Enriques, Università degli Studi di Milano Advisor: Paolo Stellari

 $4 \nmid d, 9 \nmid d, p \nmid d \forall \text{ prime } p \equiv 2 \pmod{3}$ (*)

Theorem 1

 $f \equiv 2 \pmod{6}$ and h > 1;

 $f \equiv 0 \pmod{6}$ and h > 2;

vise.

Associated double EPW sextic

We consider the double cover of the EPW sextic Y_A branched over $Y_A^{\geq 2}$ associated to a GM fourfold X. Assume that \tilde{Y}_A is smooth $\Leftrightarrow Y_A^{\geq 3} = \emptyset$.

Aim

To study \tilde{Y}_A as a moduli space of (twisted) stable sheaves on a K3 surface.

Facts (Debarre, Iliev, Manivel):

- Period points of **special** GM fourfolds form divisors in the period domain identified by the discriminant d.
- Hodge-associated K3 surface $\Leftrightarrow 8 \nmid d$ and the only odd primes which divide $d \operatorname{are} \equiv 1 \pmod{4}$ (\dagger)

Assume that X has discriminant d.

Theorem 2 (untwisted case)

If d satisfies (\dagger) , then \tilde{Y}_A is birational to a moduli space of stable sheaves on a K3 surface S. The converse holds for general X and for non general X whose period point is in a divisor with discriminant $d \equiv 2 \text{ or } 4 \pmod{8}$.

Remark: There are examples of GM fourfolds with $\operatorname{rank}(H^{2,2}(X,\mathbb{Z})) = 4$ and period point only in divisors with discriminants $\equiv 0 \pmod{8}$, having Y_A birational to a moduli space of sheaves on a K3 surface, **but** which cannot have a Hodge-associated K3 surface.

Steps:

• Mukai lattice $\tilde{H}(\mathcal{A}_X, \mathbb{Z})$

$$\langle \lambda_1, \lambda_2 \rangle^{\perp} \cong H^4(X, \mathbb{Z})_{\mathrm{van}}$$

- Relate condition (†) with existence of a primitively embedded $U = (\mathbb{Z}^2, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix})$ in the algebraic part of $\widetilde{H}(\mathcal{A}_X,\mathbb{Z}).$
- There is a primitive embedding of $H^2(\tilde{Y}_A, \mathbb{Z})$ in $H(\mathcal{A}_X,\mathbb{Z}) \rightsquigarrow$ we apply Addington's result.

Theorem 2 (twisted case)

There is a Hodge isometry $\tilde{H}(\mathcal{A}_X, \mathbb{Z}) \cong \tilde{H}(S, \alpha, \mathbb{Z})$ where (S, α) is a twisted K3 surface iff

 $d = \prod_{i} p_i^{n_i}$ with $n_i \equiv 0 \pmod{2}$ for $p_i \equiv 3 \pmod{4}$ (\dagger')

 \tilde{Y}_A is birational to a moduli space of twisted stable sheaves on a K3 surface S if and only if d satisfies

Theorem 3

 \tilde{Y}_A is birational to the Hilbert scheme $S^{[2]}$ on a K3 surface S iff d satisfies

 $a^2d = 2n^2 + 2$ for $a, n \in \mathbb{Z}$.

Stability conditions on \mathcal{A}_X (work in progress)

Property:([2]) If X is a generic GM fourfold, then the restriction to a hyperplane $\mathbb{P}(V_4) \subset \mathbb{P}(V_5)$ of the first conic fibration ρ is flat and smooth.

$$\begin{array}{c} X \longrightarrow \mathbb{P}_{X}(\mathcal{U}_{X}) \\ \sigma & [\rho] & [\rho] \\ X \longleftarrow \mathbb{P}(V_{4}) \longrightarrow \mathbb{P}(V_{5}) \end{array}$$

 $\tilde{X} = \operatorname{Bl}_E(X), \quad E = \operatorname{G}(2, V_4) \cap Q.$ **Idea:** Use $\tilde{\rho}$ to induce stability conditions on \mathcal{A}_X from $D^{b}(\mathbb{P}^{3}, \mathcal{B}_{0}), \mathcal{B}_{0} = \text{even part of associated Clifford algebra.}$

References

- [1] D. Huybrechts, The K3 category of a cubic fourfold, Compositio Mathematica 153 (2017), 586-620.
- [2] M. Ornaghi, L. Pertusi, Voevodsky's conjecture for cubic fourfolds and Gushel-Mukai fourfolds via noncommutative K3 surfaces, arXiv:1703.10844.
- [3] L. Pertusi, Fourier-Mukai partners for general special cubic fourfolds, arXiv:1611.06687
- [4] L. Pertusi, On the double EPW sextic associated to a Gushel-Mukai fourfold, in preparation.